
STAR

Schema Evolution Implementation in ROOT
I/O

V. Perevoztchikov
Brookhaven National Laboratory,USA

Victor Perevoztchikov, BNL ALICE/STARSTAR

ROOT I/O in STAR

ROOT I/O was chosen as the main mechanism of persistence in
Star. The main power of root i/o is :

u No artificial separation between transient and persistent data model.
u User is free to develop complex data objects without concern for the

I/O implementation, and -- importantly -- without building
dependence on the used I/O scheme;

u Automatic creation of a streamer method for user defined classes,
which provides persistence of the object;

u For special, more complicated, objects, user still can write this
streamer method himself.

Victor Perevoztchikov, BNL ALICE/STARSTAR

STAR I/O Classes

The component organization of STAR I/O is supported by STAR I/O
classes: StTree,StBranch, StIOEvent and StFile (no relation to ROOT
TTree and TBranch classes).
 StTree - container of components;
 StBranch - representation of STAR I/O component;
 StIOEvent - ROOT I/O connection;
 StFile - container of files.
These classes perform I/O, add, fill, update of files/components
They are heavily based on ROOT environment and work well.
However when user modifies the definition of his class and ROOT rewrites
The corresponding streamer method, then previously written data becomes
inaccessible. ROOT does not yet support automatic schema evolution.
Schema evolution aside, ROOT I/O is completely sufficient for us.

Victor Perevoztchikov, BNL ALICE/STARSTAR

Automatic Schema Evolution

Complete schema evolution is an unachievable goal, but schema evolution
With some limitations is possible. The limitations must be reasonable.
There are two solutions:

u Reading the old formatted data into memory and then the new
application deals with the old data;

u Reading and converting the old format into the new one and then the
new application deals with the new format.

The first approach was used in ZEBRA. ZEBRA can read any ZEBRA file
and it is the problem of the application to work with the old format. This
approach is completely impossible in C++. There is no way to create an
old C++ object when the new one is declared.
So, we must somehow convert the old data into the new format.

Victor Perevoztchikov, BNL ALICE/STARSTAR

Automatic Schema Evolution(continued)

To achieve this, we have modified the ROOT disk format by splitting the
whole task of writing into numerous, but simple ''atomic'' subtasks.

u Each object is written separately. All its members are written close to
each other;

u Pointers to object are not followed immediately. Writing of these objects
is delayed. This allows to skip unknown or unneeded object;

u Member which is a C++ class is written as a separate object;
u Streamer of an object is splited by "atomic" actions. An action is

applied to one member. Each action described by:
l Numeric code related to the kind of action. For example:

§ Member of fundamental type;
§ Pointer to fundamental type;
§ C++ object;
§ Pointer to C++ object.
§ Etc...

Victor Perevoztchikov, BNL ALICE/STARSTAR

Automatic Schema Evolution(continued)

u The description of these ''atomic'' actions is stored into the file together
with data. It is not the description of written classes; it is the
description of streamers, the description of how the objects were
written.

When the output format is formalized in such a way, we can compare the
streamer descriptions of old and new data.
Reading:

u Read the streamer descriptions of old classes;
u Got an old object. If class is known, create it. If not, skip object;
u Got an old ''atom''. If we have the new ''atom'' of the same kind, type

and name, fill it. If not, skip it.
Some members of the new object could not be filled. It is the responsibility
of the class designer to provide default filling of them.
After conversion, an application should deal, with not filled members. But
this is a problem of application schema evolution. I/O schema evolution
is solved.
%

Victor Perevoztchikov, BNL ALICE/STARSTAR

Modified ROOT I/O Format

 Modified ROOT I/O format is based on the last version of standard
ROOT I/O. There is no ideological difference, it is slightly different
implementation. The main feature is the possibility to skip not only object
but any member of object. It is essential for schema evolution.

u Each object has a header containing flag,classid and objectsize ;
l Short header - one 32 bits word (Classid < 1K && ObjectSize< 1M);
l Long header - two 32 bits words. (Classid > 1K | | ObjectSize> 1M);

u Object is written continuously, pointers are not followed immediately.
l Simple members written immediately;
l TObject* & TObject: buffer offset of object is written. Object itself is

written separately and schema evolution is applied for it recursively;
l General C++ class: written immediately preceded by its size;

u Reference pointers either zero or offset of object in buffer. This is a new
feature.;

u List of used classes is written at the end of the record.

Victor Perevoztchikov, BNL ALICE/STARSTAR

Automatically Generated Streamer

 The new automatically generated streamer method is more complicated
than a standard one. An additional communication with TBuffer class is
developed.

u At the beginning, Streamer asked TBuffer is class modified? If not, it
works as usual;

u Before reading of a member streamer requests TBuffer permission to
read it. If permission is granted, reading, if not, next member;

u When Streamer returns, it could be called again, to read some skipped
members. It could be happened if the order of members was changed

When it works?
u New member added;
u Old member removed;
u Type of member changed, ie. Int to float,int to short, etc…;
u Array size changed;
u Definition of class member changed;

Victor Perevoztchikov, BNL ALICE/STARSTAR

Streamer example

void TLorentzVector::Streamer(TBuffer &R__b) {
// Stream an object of class TLorentzVector.
 void (*R__bs)(TObject *,TBuffer*);
 Version_t R__v = 0;
 if (R__b.IsReading()) {
 int R__Comp = R__b.DoIt();
 if (R__Comp || R__b.DoIt(10)) R__v = R__b.ReadVersion();
 TObject::Streamer(R__b);
 if (R__Comp || R__b.DoIt(40,"fX","double",8)) R__b >> fX;
 if (R__Comp || R__b.DoIt(40,"fY","double",8)) R__b >> fY;
 if (R__Comp || R__b.DoIt(40,"fZ","double",8)) R__b >> fZ;
 if (R__Comp || R__b.DoIt(40,"fE","double",8)) R__b >> fE;
 } else {
 // Writing part is skipped
}}

//___

Victor Perevoztchikov, BNL ALICE/STARSTAR

TStreamer class

To perform schema evolution, old and new classes should be compared;
Class TStreamer keeps information how class was written. Based on this,
TBuffer::DoIt method allows or disallows to Streamer to read current part
of TBuffer.

u One instance of TStreamer related to one instance of Tclass;
u It keeps old class check sum. Comparing this with current class,

TStreamer makes decision was class modified or not;
u It keeps information about all “atomic” operations of old class;
u Above information is produced by exactly the same code by which

automatic Streamer was generated;
u Hash list of TStreamer’s belongs to TFile and saved during Close()
u When TFile is opened this information restored and acceptable to

TBuffer

Victor Perevoztchikov, BNL ALICE/STARSTAR

Modified ROOT classes

u TStreamer - new class introduced;

u TClass - GetClassID method, returns class check sum;

u TFile - add TStreamer hash list;

u rootcint - new automatic Streamer generated;

u TBuffer - big modifications;

u TKey - minor modifications;

Victor Perevoztchikov, BNL ALICE/STARSTAR

Conclusions

u ROOT I/O was modified and automatic schema evolution implemented.
It is in testing stage now. Performance:

l Size of file the same as in standard ROOT;
l The same speed as standard ROOT.

 Current status:
u Codes of modified ROOT I/O and automatic schema evolution are ready

and should be tested in real production.

Victor Perevoztchikov, BNL ALICE/STARSTAR

Future

 Future of STAR-like ROOT schema evolution , as usual for any future,
is unclear.
It could be 3 scenarios:

u The best one: our automatic schema evolution will be accepted by
ROOT framework;

u It will not be accepted. Then we introduce StTBuffer,StTFile, etc…
inherited from standard ROOT classes and will be used in STAR. It is
not convenient, but possible solution. (As Rene told - schism);

u Somebody will implement better schema evolution and we will accept it

